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ABSTRACT
Training reinforcement learning agents on a distribution of procedu-
rally generated environments has become an increasingly common
method for obtaining more generalisable agents. However, this
makes evaluation challenging as the space of possible environment
settings is large, and simply looking at the average performance
is insufficient for understanding how well - or how poorly - the
agents perform. To address this, we introduce a method for strate-
gically evaluating and influencing the behaviour of reinforcement
learning agents. Using deep generative modelling to encode the
environment, we propose a World Agent which efficiently gener-
ates and optimises worlds (i.e. environment settings) relative to
the performance of the agents. Through the use of our method on
two distinct environments, we demonstrate the existence of worlds
which minimise and maximise agent reward beyond the typically
reported average reward. Additionally, we show how our method
can also be used to modify the distribution of worlds that agents
train on, influencing their emergent behaviour to be more desirable.
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1 INTRODUCTION
Deep reinforcement learning has achieved many successes in the
last few years. Be it human-level performance in the Atari games
[26], solving continuous control tasks [24], or interacting in multi-
agent settings [23], it is easy to see the progress which has been
made. However, in many of these examples, agents are typically
trained and evaluated on the same environment. As a result, this
raises the concern that agents are overfitting to these environments
[35], and therefore minor changes can significantly impact their
performance.

One approach for improving the generalisation of agents is to
train them on a distribution of procedurally generated environ-
ments. In this setup, a new environment setting (whichwe callworld
throughout this paper) is generated every episode. Such worlds can
have different spatial layouts, entity types, and objectives, with the
intention of improving the diversity of the training distribution and
therefore improving agent performance on other environments.

While training agents on procedurally generated environments
has improved their ability to generalise [16, 18, 19, 28], it does make
evaluating agents more challenging. This is because the space of
possible environment settings (i.e. worlds) is huge, and as such it
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Figure 1: Examples of environment settings (i.e. worlds)
which significantly deviate from the average reward. Left: A
challenging race track due to its sharp corners, significantly
reducing agent reward. Right: A short easy track due to its
absence of sharp corners, leading to high agent reward.

is unlikely an agent will see the same world twice through ran-
dom sampling. Additionally, the diversity of worlds may not be
uniformly distributed, resulting in many worlds which are similar
and/or simplistic. As a training method, this can lead to agents
learning undesirable behaviours, while as an evaluation method
this can lead to overconfidence in the performance of agents.

For safety-critical applications of reinforcement learning, such
as self-driving cars and healthcare, it is vital that we understand
where trained agents succeed and where they fail. In these use-
cases, training and evaluating agents on randomly sampled worlds
is insufficient for understanding how well - or how poorly - they
perform, and can also lead to undesirable learned behaviours emerg-
ing (such as high aggression). To demonstrate this, in Figure 1 we
show the high reported average reward of an agent on our racing
environment. Importantly, we also show the discovered worlds
which cause the trained agent to perform worst (minimum reward)
and best (maximum reward).

To address this, we propose a method for strategically evaluat-
ing and influencing reinforcement learning agents. Concretely, we
introduce a generative agent – called the World Agent – into the
training and evaluation process of reinforcement learning agents,
giving it the ability to modify the distribution of worlds the agents
see. It does this by using deep generative modelling to learn a latent
representation of the world which it can then optimise in response
to the behaviour and performance of the reinforcement learning
agents. As an example, such optimisations could be to maximise
the reward achieved by the agent, or minimise the occurrence of
undesirable actions.

We demonstrate our method by applying it to two distinct use-
cases: a single-agent racing environment and amulti-agent resource
gathering environment. For both, we use our method to efficiently
and consistently sample worlds which lead to minimal and maximal
agent reward. Notably, we find challenging worlds where agents
perform poorly, as well as highlight simple worlds where agents
perform well. In addition, we include an analysis of two optimisa-
tion methods and discuss the trade-off between their performance
and sample efficiency. To conclude, we use our method to update
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the training distribution of the agents based on their performance,
influencing their learned behaviour to be more desirable.

In summary, our three contributions are as follows:

(1) We introduce a World Agent which can generate worlds (i.e.
environment settings) by training a deep generative model
to parameterise a procedural environment generator.

(2) We demonstrate a sample efficient method for strategically
evaluating agents using our trained World Agent, discover-
ing worlds which lead to minimal and maximal agent reward.

(3) We show that our method can be used to modify the train-
ing distribution of agents, leading to different emergent be-
haviours which can be more desirable.

2 RELATEDWORK
As our work draws on a wide body of literature, we broadly group
our related work into two categories: (1) reinforcement learning
and (2) generative modelling.

2.1 Reinforcement Learning
It has been recently shown that deep reinforcement learning agents
can overfit in both single-agent [35] and multi-agent [22] environ-
ments, limiting their ability to generalise. One technique to help
improve generalisation is to procedurally generate a distribution of
worlds (i.e. environments, levels, maps, tasks) for agents to train on.
For example, it has been used to prevent memorisation in Sokoban
[28], generate challenging terrains and obstacles for continuous-
control tasks [16], and form a hand-crafted curriculum in a number
of video games [19].

Most recently, concurrent work to ours has started to investigate
how single-agent reinforcement learning can be evaluated in pro-
cedurally generated environments. Specifically, worst-case analysis
has been performed on a state-of-the-art maze navigation agent [2],
and adversarial testing has been used to uncover rare catastrophic
failures [1]. In comparison to both of these, we apply our method to
an environment populated by multiple agents (Resource Harvest)
and additionally investigate using our method to train agents rather
than just evaluating them (which we refer to as influencing).

While training on a procedurally generated distribution has
started to become more common in single-agent reinforcement
learning research, applications to multi-agent settings have re-
ceived less attention. One recent exception to this is Jadgerberg et al.
(2018) [18] who obtained human-level performance in first-person
multiplayer games by training agents on a diverse distribution of
procedurally generated maps. Our work is an additional contribu-
tion to the multi-agent setting, and is an interesting use-case for
further research in the area as the environment’s settings can have
a large influence on the emergent interactions between agents.

Building on the idea that the environment itself can influence
multi-agent behaviour, Perolat et al. (2017) [27] demonstrated how
– through handcrafting the environment – different social outcomes
can emerge, such as conflict and inequality. We build on this work,
creating a generative World Agent which can automatically gener-
ate such environments rather than requiring them to be handcrafted
by a domain expert. Additionally, in our influencing experiments
(Section 6.2) we use their proposed conflict and equality metrics to

summarise social outcomes and influence agent behaviour towards
lower conflict and higher equality.

Another related area to our work is Safe Reinforcement Learning
[10]. In comparison to much of this area, we examine how the
dynamics of the environment itself can be changed, rather than the
learning process of the agents interacting with the environment.
Our method can also be used to evaluate the safety of learned
policies as our evaluation process makes no assumptions about
how the agents were trained.

Outside of reinforcement learning, there is a large body of re-
lated literature on Procedural Content Generation (PCG) for game
content and understanding how it interacts with the player. For
example, weapon design [15], level generation [33], and mechanism
generation [37]. Modern machine learning techniques are being
increasingly applied to this domain [31], and our work is a further
contribution towards this.

2.2 Generative Modelling
Our approach makes use of deep generative modelling to encode
and optimise worlds. Such methods have been recently used to train
agents inside their own learned world models [13] and generate
video game levels from human-designed content [11].

Several works have investigated exploring the latent space of a
generative model. For example, Bontrager et al. (2018) [4] propose a
system for users to interactively evolve the latent vectors for a GAN
towards target images (e.g. shoes). In related concurrent work to
ours, latent variable evolution [5] was used to evolve Mario levels
in the latent space of a GAN pre-trained on existing game levels
[34]. We improve upon these works by considering agents which
are able to learn, allowing us to evaluate their policies and influence
their learning though variations in the world, both of which we
investigate throughout this paper.

Others have also had success in using reinforcement learning it-
self to generate content. Ganin et al. (2018) [9] adversarially trained
a reinforcement learning agent to generate images in the space of
visual programs, while Zhang et al. (2018) [36] trained an agent to
design mazes to be solved by other heuristic- and learning-based
agents. In comparison, we focus on efficiently generating worlds
for evaluating agents in both single- and multi-agent settings.

Our work also has parallels to mechanism design [7] which
looks at how game rules (i.e. mechanisms) can be constructed such
that desirable agent behaviours emerge, despite the agents’ self-
interests [29]. Recently, reinforcement learning and deep learning
have been used to scale and automate mechanism design [8, 32],
however limited work has been done from the perspective of agents
interacting in an adaptive spatial environment.

3 PRELIMINARIES
In this section, we provide background information and notation
which we use throughout the paper. Specifically, we introduce
deep generative modelling (to generate worlds), deep reinforcement
learning (to train agents in the world), and black-box optimisation
(to optimise worlds).
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3.1 Deep Generative Modelling
The aim of probabilistic generative modelling is to recover the true
distribution of the input data X. By sampling this distribution, new
data points can be generated which resemble the observed data.
We focus on the class of models which build approximate data
distributions that are conditioned on the latent space z and a set
of parameters θд , where we use the subscript ‘д′ to denote the
parameters of the generative model.

In deep generative models, these parameters are the weights of
deep neural networks. For our work, we use a Variational Auto-
Encoder (VAE) [20] which learns an approximate distribution to
the true data by maximising the evidence lower bound of the log
likelihood of the data. The VAE is composed of an encoder-decoder
architecture, where the encoder compresses data, X, into the latent
space z, and a corresponding decoder is learnt to recover this data
by transforming from the latent space back to the original data.
This encoder-decoder structure is shown by the two distributions:

X ∼ p(X | θд , z), z ∼ q(z | θe ), (1)

where we introduce our encoder q(z | θe ) (approximate inference
network), with its corresponding parameters θe . Once the VAE has
been learnt, the separate components can be used independently
in order to either generate new data samples or to compress data
into the latent space. This ability to use each component on their
own is important for our work as will be shown in Section 4.2.

3.2 Deep Reinforcement Learning
As we consider both single- and multi-agent environments, we
provide general multi-agent RL notation for N agents. In the single-
agent setting, we set N = 1.

A stochastic game for N agents is defined by a set of states S, an
observation function O : S×{1, ..,N } → Rd specifying each agent
i’s d-dimensional private observation, and a set of actions for each
agentAi . Agents choose their actions by sampling from a stochastic
policy π i : Oi × Ai → [0, 1] which leads to a state based on the
state transition function T : S × A1 × ... × AN → ∆(S) (where
∆(S) denotes the set of discrete probability distributions over S).
Each agent i receives reward defined as r i : S×A1× ...×AN → R
and tries to maximise its own total expected future reward Ri =∑∞
t=0 γ

t r it , where γ ∈ [0, 1) is the temporal discount factor and r it
is the reward received by agent i at time t .

The goal of reinforcement learning is to find the optimal policy
π∗ which achieves the maximum expected return from all states.
In deep reinforcement learning, this policy is approximated with a
deep neural network [26].

3.3 Black-Box Optimisation
If we want to optimise an objective function, but are only able to
query the value f (x) for a point x ∈ X, then the problem setup is
known as black-box optimisation. The key challenge is that f (x) is
not available in a simple closed form, leading to an optimisation
task:

x∗ = argmax
x∈X

f (x), (2)

where gradient information about the black-box objective function
f (x) is unavailable.

To solve such tasks, Evolution Strategies (ES) [25] approach the
problem by evaluating the fitness of a batch of solutions, after which
the best solutions are kept while the others are discarded. Survivors
then procreate (by slightly mutating all of their genes) in order
to produce the next generation of solutions. In this work, we use
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [14]
which adaptively changes the size of the search space each gener-
ation. Another common approach is Bayesian Optimisation (BO)
[30] which defines a prior distribution over the objective function
(e.g. a Gaussian process) and selects new samples according to an
acquisition function. The acquisition function defines a trade-off
between exploration and exploitation when querying the objective
function. We perform a comparison between CMA-ES and BO in
Section 6.1.3.

4 METHODS
In this section, we introduce our method for strategically training
and evaluating agents.

4.1 Overview
We propose the introduction of a generativeWorld Agent into the
training and evaluation process of reinforcement learning agents.
By encoding the environment using a deep generative model and
then searching in the model’s latent space, our World Agent is
able to efficiently adapt the distribution of worlds based on the
performance of the reinforcement learning agents.

To help explain our method, we separate it into three phases
which are visualised in Figure 2.

(1) Generate Worlds: Sample worlds using our pre-trained
deep generative model.

(2) Train Agents: Train reinforcement learning agent(s) on the
sampled set of generated worlds.

(3) OptimiseWorlds: Iteratively generate and optimise worlds
to maximise a given agent-based metric.

In this work, we consider both one iteration (for evaluating
agents, see Section 6.1) and two iterations (for influencing agents
via retraining, see Section 6.2) through these phases.

4.2 Generating Worlds
Rather than individually optimising every aspect of a world, for
example at an individual pixel level, we use a deep generative model
to compress the complex distribution over the world space W into
a tractable distribution over the latent space z. This allows us to
efficiently optimise the environment by searching within this lower
dimensionality latent space (Section 4.4). In Equation 3 we show
how a world wi can be sampled from the latent space by passing a
sample zi to the generator G, where θд are the generator’s weights:

wi = G(zi ;θд), zi ∼ q(z | θe ) (3)

To learn θд and θe , we train our VAE on a dataset of worlds
created by a handcrafted procedural generator. As such procedural
generators are typically rule-based or involve few parameters, they
are challenging to optimise. To address this problem, we use a VAE
which compresses the complex parameter set of the procedural
generator into a tractable distribution over the latent space, making
it possible to optimise worlds efficiently.
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(a) Generate worlds via sampling.
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(b) Train agents on sampled worlds.
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(c) Optimise worlds given trained agents.

Figure 2: The three phases of our method. (a) Generate Worlds: sample latent vectors (z) from the latent space as input to the
generator G to produce a set of worlds (w1, ...,wM ) from the world distribution, (b) Train Agents: use sampled set of worlds
(W) to train reinforcement learning agents A , (c) OptimiseWorlds: using our optimiser O , iteratively sample the latent space
to find z∗, where z∗ is an optimal point in the latent space thatmaximises theWorld Agent’s objective. Notation: zi corresponds
to the latent vector of world wi ; the World Agent’s evaluation of wi is given by the metricMi .

After training, we use the learned decoder to form our gen-
erator G . To ensure that all generated worlds are valid for our
environments, we include an additional processing step (described
in Section 5.2). In Figure 3 below, we visualise an example of this
pipeline for training the VAE and forming the the generator.

Encoder z Process
... ......

Dataset Reconstruction Worlds 

Training
G enerator 

Decoder

Figure 3: Setup of our VAE. (1) Training: Use procedurally
generated dataset to train encoder and decoder, minimising
error between input and reconstruction. (2) Generator: Use
the trained decoder, and additional processing step, to form
our World Agent’s generator.

4.3 Training Agents
The next phase of our method is the training of the reinforcement
learning agents1 which interact in and with the worlds produced
by our World Agent. Importantly, we assume that this is the only
phase where the reinforcement learning agents learn.

Each agent tries to learn a policy which maximises its own ex-
pected return across the provided distribution of worlds. Impor-
tantly, agent reward functions do not have to align with our World
Agent’s objective.

For a given world wi and its latent representation zi , the be-
haviour of the agents is summarised in their corresponding set of
trajectories Ti . These can then be quantified into various metrics
M which we introduce in the next section.

4.4 Optimising Worlds
To search the space of worlds, we use an optimiser to sample from
the latent space of the generator. Samples are selected with the goal
1While we use reinforcement learning in this work, our approach also works for
rule-based and pre-trained agents, as well as any other agent-based training method.

of maximising the World Agent’s objective function (i.e. metricM),
where the optimisation task:

z∗ = argmax
z

M
(
G(z;θд),T(z)

)
, (4)

is over the latent space. This objective function depends on the
behaviour of the agents (the trajectories T ) and the generated
worlds {G(zi ;θg)}Mi=1, both of which are functions of the latent
space.

For this optimisation task, there exists a trade-off between sample
efficiency and performance. If sampling is expensive, then wewould
like to minimise the number of samples required. This is important
if it takes a significant amount of time or resources to run an episode.
On the other hand, if sampling is fast and cheap, then we would
prefer a method which finds more optimal points even if it took
longer. To this end, we compare two different types of optimisation
methods described in Section 6.1.3 - an Evolution Strategy (ES) and
Bayesian Optimisation (BO).

Metrics. The main metric we consider and optimise for using
our World Agent is the reward the reinforcement learning agents
receive. For our single-agent environment, this is simply the agent’s
total reward received in an episode, while in our multi-agent envi-
ronment this is the sum total of rewards received by all agents (i.e.
total group reward). We also consider several domain-specific met-
rics for both environments, however we defer their explanations
until after we have introduced the environments (Section 6.2).

5 EXPERIMENTAL SETUP
In this section, we provide details on our environments, our World
Agent which generates and optimises worlds for these environ-
ments, and the reinforcement learning agentswhich are then trained
and evaluated in these generated worlds. In all of our experiments,
we consider worlds (i.e. environment settings) to be the spatial
layout of the environment, and therefore optimising worlds refers
to the World Agent modifying the environment’s spatial layout.

5.1 Environments
5.1.1 Particle Racing. Our first environment, shown in Figure 4,

is a single-agent particle racing game based on the OpenAI GymCar
Racing environment [6]. The objective for the agent is to complete
one loop of the track as quickly as possible, receiving −0.2 reward
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per step and a positive reward proportional to their speed along
the track. In addition, if the agent leaves the track (i.e. crashes), it
receives −300 reward and the episode is terminated. The episode
also terminates after 300 steps if no crash occurs.

Example World

+
[x, y, dx, dy]

Agent 
 Observation

Figure 4: Example world (left) and agent observation (right)
for the Particle Racing environment. The blue circle is the
agent, grey is the track which the agent can move on, and
green is the grass upon which the agent crashes. The agent’s
observationwindow is represented by thewhite dashed line.

The agent observes its surrounding area, as well as its current
position and directional speed. At each step, the agent can apply
a unit of force in one of four directions, increasing its velocity in
that direction which is then gradually decreased over time due to
friction from the track.

For this environment, our world agent can optimise the layout
of the track, ranging it from a trivial oval to a challenging star with
many sharp corners.

5.1.2 Resource Harvest. Our second environment, shown in Fig-
ure 5, is a multi-agent resource gathering game which has been re-
cently explored in the multi-agent reinforcement learning literature
[17, 23, 27]. Inspired by laboratory experiments from behavioural
game theory, the harvest game is a sequential social dilemma for
studying the emergent behaviour of groups in a spatial and tempo-
ral setting.

The environment itself consists of four self-interested agents
who individually receive +1 reward for harvesting a resource (per-
formed by moving onto it), and are therefore motivated to harvest
the resources as fast as possible before the other agents are able to
do so. Notably, resources recover based on the amount of nearby
resources, and therefore leaving several resources untouched leads
to faster recovery and more to collect in the long run.

Each agent has an orientation and observes the area it is facing.
At each step, agents can stand still, move either forwards, back-
wards, left, or right, as well as rotate left or right.

For this environment, our World Agent can optimise the location
of resources and walls, allowing for the isolation of agents and the
privatisation of resources. Importantly, the agent spawn locations
are fixed to the four corners.

5.2 World Agent
5.2.1 Generator. To encode the space of worlds, we train a Vari-

ational Auto-Encoder (VAE) on a procedurally generated dataset
of worlds, using the learned decoder as the World Agent’s gen-
erator. Both the encoder and decoder of the VAE consist of two
fully connected hidden layers, whereby the encoder has a 1024–512
structure and the decoder is the transpose. The dimensionality of
the latent space z is 10.

Example World

Agent 
 Observation

Figure 5: Example world (left) and agent observation (right)
for the Resource Harvest environment. The red blocks are
the agents (with the blue block representing the observing
agent), the green blocks are resources (i.e. apples) which can
be collected, and the grey blocks are walls. The agent’s ob-
servation window is represented by the white dashed line.

For the Particle Racing environment, we use the procedural
generator from the Car Racing environment [6] to generate a dataset
of 10, 000 tracks which we compress to 64 × 64 for training our
generator. To ensure generated tracks are valid, we then map each
reconstructed track to its most similar procedurally generated track.

As a procedural generator does not exist for the Resource Harvest
environment, we constructed our own and generated a dataset of
10, 000 worlds for training our generator. To ensure consistency
across generated worlds, we process the reconstruction such that
the number of resources is the same across all worlds.

Our handcrafted procedural generator works as follows: (1) cre-
ate 0-4 regions of random sizes grown from each corner of the grid
world, (2) merge overlapping regions, (3) add a bordering wall to
each region with an optional entrance, (4) add clusters of resources
to each room.

5.2.2 Optimiser. Weuse and compare two different optimisation
algorithms for finding worlds. The first optimiser, and main one
we use throughout, is Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). For this, we use the implementation of Ha
(2017) [12] with a population size of 21. The second optimiser we
investigate is Bayesian Optimisation (BO) which we implement
using GPyOpt [3] and compare to CMA-ES in Section 6.1.3. For both
optimisers, we evaluate each world 8 times and take the average of
the returned metrics.

5.3 Reinforcement Learning Agents
We use two different deep reinforcement learning algorithms for
the agents depending on whether the environment is single- or
multi-agent. For the single-agent Particle Racing environment, we
use an existing PyTorch implementation of the ACKTR algorithm
[21] with its default settings, training for 10, 000 episodes. For the
multi-agent Resource Harvest environment, we use independent
learning with each agent separately learning using its own Deep Q-
Network [26]. We use the same settings as existing related literature
on this environment [27] and train for 5, 000 episodes.

6 EXPERIMENTS
In this section, we present the key results from our experiments.
First, that we can efficiently find worlds which lead to significant
differences in the performance of agents (Section 6.1). Next, that
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(a) Distribution of rewards from randomly sampled worlds. (b) Optimised worlds which minimise and maximise agent reward.

Figure 6: Results from evaluating agents on both environments. (a) Standardmethodwhere randomly sampledworlds are used
to assess an agent’s performance. Particle Racing yields a consistently high reward, while Resource Harvest hasmore variance
but is still typically high. (b) Our strategic evaluation which efficiently discovers worlds where the performance of agents is
minimised and maximised. Notably, our method is able to find worlds where the performance of the agents significantly
deviates from the average.

this information can be used to modify the training distribution of
agents, influencing their emergent behaviour (Section 6.2).

Note, we normalise all reported metrics to be between 0 and 1
to improve readability.

6.1 Evaluating Agents
To begin our experiments, we evaluate agents trained on a distribu-
tion of procedurally generated environments. First, we analyse them
on randomly sampled worlds, similar to how they were trained.
Next, we use our method to demonstrate the possible variances in
agent performance on procedurally generated environments. To
conclude, we then show the sample efficiency of our method.

6.1.1 Random Evaluation. To demonstrate the potential issues
with evaluating agents via random sampling, we first evaluate
agents on 1,000 randomly sampled worlds for both environments,
visualising the resulting reward distribution in Figure 6a.

As can be seen, for Particle Racing a vast majority of the sampled
worlds return a high reward, giving an overall average reward of
0.87. From this, wewould typically conclude that the agent performs
well and also generalises well to other tracks as we trained it on a
diverse range of tracks. For Resource Harvest, the distribution of
rewards has a higher variance due to the higher stochasticity in the
environment, however most of its mass is still between 0.3 and 0.8
with an average of 0.61.

6.1.2 Strategic Evaluation. Next, we evaluate the agents using
our method to efficiently find worlds where they perform worst
(minimum reward) and perform best (maximum reward), yielding
surprising results compared to our average analysis.

For Particle Racing (Figure 6b, top), our method finds a rare
world which consistently causes the agent to crash, resulting in
a minimum reward of 0.13 (an 85% reduction in reward from the
reported average of 0.87). Notably, the environment has a high
number of sharp and unexpected corners. In contrast, the world
the agent performs best on – obtaining a reward of 0.99 – has no
surprising corners, and is instead a simple rectangle-like shape. As
a result, the agent never crashes.

For Resource Harvest (Figure 6b, bottom), our method finds a
spatial arrangement of resources and walls such that the reward of
the agents is heavily diminished - from the average of 0.61 down
to a minimum of 0.05 (a 91.2% reduction). This was achieved by
spreading out the resources so that they do not gain the recovery
bonus from nearby resources. Conversely, reward is maximised
(0.92, up from the average of 0.61) by removing walls and grouping
resources so that they all benefit from the recovery bonus and
therefore recover as quickly as possible.

In summary, we find that our method is able to evaluate where
agents perform well and where their performance is significantly
reduced. Next, we will demonstrate that this process is significantly
more sample efficient than random sampling.

6.1.3 Analysis of Optimisation Methods. A key component of
our World Agent is the optimisation process by which worlds are
optimised based on the performance of the agents. To analyse the
effectiveness of our optimisers, Figure 7 presents the distribution
of rewards from worlds sampled by each optimiser with the World
Agent’s objective set to finding worlds which minimise the agent’s
reward.
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Figure 7: Reward distribution of each optimiser (ES & BO)
optimising forminimal reward on the Particle Racing envi-
ronment, and the Random distribution from Figure 6a.

As can be seen, both the evolution strategy (ES) and Bayesian
optimisation (BO) are able to find a large number of worlds which
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(a) Particle Racing. (b) Resource Harvest.

Figure 8: Comparison between training methods for (a) Particle Racing and (b) Resource Harvest. Default Training is where
agents are trained on randomly sampled worlds. Influenced Training is where agents are trained on our modified training
distribution. We also include two example worlds which are included in the new training distribution. Additional Metrics:
Crash Rate is the probability of an agent crashing in an episode, Conflict is the average number of steps in an episode where
agents are tagged out, and Equality is the distribution of rewards across agents calculated as 1-Gini Coefficient.

lead to significantly lower reward than average. Interestingly, we
see that ES performs the best (i.e. more mass on lower rewards),
however of note is that BO is more sample efficient, achieving a
high reward on average but requiring 5× fewer samples during the
optimisation process. This result indicates that there is a useful
trade-off between performance and sample-efficiency which can
be made based on the cost of sampling.

6.2 Influencing Agents
In our next set of experiments, we use our method to adjust the
training distribution of agents by sampling worlds which maximise
a given agent-related property. Concretely, we create a new training
distribution consisting only of sampled worlds which have the
property we desire (specific to each environment), and then train
new agents on this distribution. These trained agents are then
evaluated on the same random distribution of worlds as the previous
experiment, demonstrating that learned behaviours transfer. We
refer to this process as influencing agents as our method influences
the learned emergent behaviour of the agents.

As each environment is different with their own unique metrics
and results, we investigate them separately.

6.2.1 Particle Racing. In this environment, we observe that there
exists many possible worlds which causes agents to crash. For
safety-critical applications like self-driving cars, this is undesirable.
To this end, we sample worlds where agents are likely to crash (i.e.
high crash rate, > 0.5) to form the new training distribution. As
shown in Figure 8a (right), these worlds tend to be challenging with
at least one sharp corner.

In Figure 8a (left) we present the results of our influenced training
regime. Notably, crash rate is significantly reduced, dropping from
0.11 to 0.04. This comes at the cost of a 5% reduction in reward due
to the agent driving slower and therefore taking longer to complete
the track. In the context of safety, our re-trained agent’s behaviour
is more desirable as it crashes less often.

6.2.2 Resource Harvest. For this environment, we consider the
situation where one agent in a multi-agent system has more power

than the others. Specifically, we allow this agent to perform the
TAG action which fires a 3-block wide beam forward from the agent,
removing any other agent hit from the episode for 25 steps. To mea-
sure the social consequences of this, we use two metrics introduced
in Perolat et al. (2017) [27]:

(1) Conflict: The average number of steps in an episode where
agents are tagged out.

(2) Equality: The distribution of rewards across agents, defined
using the Gini coefficient as follows:

Equality = 1 −
∑N
i=1

∑N
j=1 |R

i−R j |

2N
∑N
i=1 Ri

Typically in this situation, the more powerful agent would tag
other agents as much as possible (high conflict), reducing compe-
tition and therefore privatising the resources (high inequality). In
many scenarios, this can be an undesirable behaviour which we
would like to minimise. For example, if a powerful AI is created,
we would like it to fairly share resources with human users rather
than exploit them to maximise its own reward.

To counter this undesirable behaviour, we sample worlds which
minimise conflict to form the new training distribution. Specifically,
we sample worlds where no agents are tagged out in an entire
episode, and then train fresh agents on this new distribution. As
shown in Figure 8b (right), these no-conflict worlds are typically
ones where the tagging agent (shown as blue in the top left of the
world) is isolated from the other agents through the use of walls.

We present the impact of this training method in Figure 8b (left).
As can be seen, our influenced training regime results in signifi-
cantly lower conflict (from 0.51 to 0.05) and higher equality (from
0.33 to 0.78). This arises as the tagging agent never learns to asso-
ciate its aggressive TAG action with increased reward, and therefore
reduces the probability of its use. This comes at the cost of reduced
group reward as the resources are less likely to be privatised.

7 CONCLUSIONS AND FUTUREWORK
In this work, we introduced a method for strategically evaluating
and influencing reinforcement learning agents. By encoding the
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environment using a deep generative model and then optimising
in the latent space based on agent performance, we showed that
our method can efficiently and consistently discover worlds which
minimise and maximise agent performance. We further demon-
strated that we can influence the emergent behaviour of agents
by adapting the training distribution of worlds, producing agents
whose behaviour is more desirable.

For safety-critical applications of reinforcement learning and
multi-agent systems, our method provides a way of analysing and
understanding where trained agents perform well and where they
fail. For example, it can be used to efficiently discover simulated
environment settings which cause a self-driving car to crash, as well
as train an agent to interact more cooperatively in a multi-agent
setting.

There are a number of natural extensions to explore in future
work. First, we will further investigate how our method can be used
in the training of agents, such as through additional iterations of
our three-phase method or in an online manner where agents are
continuously evaluated as they train. Next, for our generativeWorld
Agent we will look into other generative models (such as GANs),
using reinforcement learning [9], as well as additional optimisation
techniques that perform well while maintaining sample efficiency.
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