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Abstract

There is a need for collecting more comprehensive data on mosquito popula-
tions in malaria-affected countries. A better understanding of the prevalence
of mosquitoes and their geographic locations would provide information that
could be used in the battle against malaria. Current techniques for gathering
data consist of taking readings at very localised sites and counting the number
of outbreaks of the disease in different areas. This paper looks at modelling
a network of sensors deployed to detect mosquitoes and produce a prediction
of the local mosquito population. The compromise between battery life and
the quality of the measurements is shown along with considerations over the
sensor network infrastructure.

1 Introduction

The increasing prevalence of deploying small wireless devices brings the opportunity of
gathering large amounts of data about our environment that was previously not possible.
However, this also brings with it the requirement of implementing smart algorithms that
enable these networks of sensors to adapt their behaviour to make intelligent decisions
based on their environment.

Relevant work that has looked into smart sensor networks include Farinelli, Rogers
and Jennings (2008) [1] and Rogers David and Jennings (2005) [2]. Focussing on wide-
area surveillance, Farinelli et al. (2008) describe using techniques such as the max-sum
algorithm to determine the sense/sleep schedules of sensors to maximise network efficiency.
Looking at sensor networks from an agent-based game theoretic point of view, Rogers et al.
(2005) introduces a sensor network where each sensor follows a static strategy to maximise
a reward. This static strategy aims to maximise the overall objective of the network by
allowing each device to act in its own interest. This is part of an emerging field called
mechanism design [3] that combines multi-agent systems with game theory and emphasises
decentralising the control of networks by allowing the agents to act for themselves.

Our interest in this area has arisen from the challenge of collecting data on mosquito
populations as part of the HumBug project [4]. There is a great need to gather this in-
formation as previous attempts to map mosquito occurences geographically have either



been heavily reliant on expert opinion or have understandably been biased towards ar-
eas with evidence of malaria being transmitted [5]. Therefore the aim of the HumBug
project is to distribute portable devices in malaria-stricken countries to build a more com-
prehensive data set of mosquito populations. This is with objective of understanding
the possible causes of malaria outbreaks by combining gathered data from sensors along
with our knowledge of the surrounding environment. Combining factors such as the local
weather, fauna and flora with collected mosquito data could point to significant indicators
of mosquito prevalence and enable preventative action to be taken in areas recommended
by an overall model.

The reliance of future models on collected mosquito data highlights the importance
of developing a network to cover as large an area as possible for as long a time period
as possible. This paper specifically looks into the requirement of conserving battery life
whilst ensuring that the quality of the overall population model is kept above a suitable
threshold level.

Section 2 describes the sensor network model and also introduces Gaussian processes
and Variational Bayesian linear regression. These techniques are then put together in
section 3, which describes the application of active sampling. The results and conclusions
of the active sampling are then displayed in sections 4 and 5 respectively.

2 Modelling the sensor network

This section introduces the setup of the sensor network. The experiment is set up as a
unit square with sensors spread across in a grid-like pattern (see figure 1). The mosquito
data is generated under the assumption that the insects have peak times of activity at
both 6:00 and 18:00. During the daytime, this activity level is taken to be a flat low
nominal level, whereas the nightime level is taken as a flat higher level. This approximated
mosquito activity function gives a time dependent rate that can be used as the parameter to
generate Poisson-distributed random variables corresponding to the number of mosquitoes
appearing at different times. Calling each appearance of a mosquito an event, the location
of each event can be sampled from a two-dimensional Gaussian distribution. In the case of
figure 1, the event coordinates are drawn alternatively from two Gaussians, approximating
two swarms. This time-dependent activity function to simulate the data follows page 669
of [6], which looks into the daily cycle of mosquitoes.

Apart from making an assumption about the form of the mosquito data, we also enable
the sensors to have access to the true time and their location. Access to other significant
factors, such as the local weather conditions, have not been included in this paper but
must be considered in future analysis.

2.1 Reconstructing the mosquito density function using a Gaussian pro-
cess

The limited number of devices spread over the total area requires a model that is able
to take advantage of a small number of training points. Therefore a two-dimensional
Gaussian process (GP) is used to reconstruct the mosquito density function as a GP is
able to utilise a sparse number of input measurements to produce a model.

A two-dimensional GP is used to reconstruct the mosquito density function. The input
space of the GP consists of the x and y coordinates of each sensor, along with their hourly
readings. The readings must be kept positive as it is not possible to see a negative number
of mosquitoes. Applying the logarithm to these readings before passing them into the GP
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Figure 1: An example of a configuration of the mosquitoes and the sensors. There are 36
sensors spread in a grid and two swarms centred at locations (0.25,0.25) and (0.75,0.75).

enforces this positive requirement.

Building our prior knowledge into the key components of the GP is important for
ensuring that the approximation is as close as possible to the true distribution. Therefore
using a zero mean function appropriately accounts for the assumption that the sensors
see few mosquitoes most of the time, apart from the sensors that find themselves in the
vicinity of swarms (see figure 1). As the logarithm of the readings is taken, any sensor
that does not detect any events in an hour of readings must be incremented to one to
allow the use of the logarithm.

The covariance function defines the correlation between locations in the input space
given by a kernel. Equation 1 shows the chosen covariance kernel that consists of a two
dimensional Matérn 3/5 kernel [7].

K(r) = o? (1 + \/§r> exp (\/§r> + 021, (1)
2 (x X,d)2

where r = ZT
d=1 d

The d corresponds to a particular dimension of the input vector x. The hyperparameters
are lg, o and o,. o is the output scale length and o, accounts for the noise as well as
improving the condition of the covariance matrix. The input scale length, [;, specifies
how strong the data is correlated in each of the d dimensions. Note that I is the identity
matrix.

This GP can then be used to produce the mosquito density function from the simulated
data. Figure 2 is an example of the GP approximating two swarms of mosquitoes. The
two peaks can clearly be seen as areas of high mosquito activity.

Having inferred the posterior mean surface, the total population can be estimated via
an integration of this two-dimensional posterior mean over the unit square. However before



Reconstruction of the mosquito density function
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Figure 2: The GP posterior mean surface used to model the mosquito activity. The 36
sensor configuration is shown in figure 1. The sensor readings are the blue dots and the

two peaks correspond to the two mosquito swarms.

integrating, the earlier normalisation step along with the application of the logarithm must
be reversed. As each sensor measurement represents the local surrounding area, these
measurements are in fact density readings. Therefore in order to achieve the appropriate
population estimate each sensor reading is divided by its corresponding detection area,
Ager- This division scales the double integral and is shown in equation 2. Following the
same procedure, the upper and lower 95% confidence bounds are also integrated in the
same way. The conversion from a log scale extends the upper bound further away from
the posterior mean than the lower bound and puts a higher probability on the expectation
of false positives. This higher expectation is preferred to false negatives and is aligned
with the objective of the acoustic detection algorithm that is being developed to prefer

false positives over false negatives.

pontt) = 5= [ )i 2

2.2 Variational Bayesian linear regression with automatic relevance de-
termination

The method of Variational Bayesian linear regression with automatic relevance determi-
nation can be used to infer a model that can be used to make predictions on mosquito
population values. Roberts, McQuillan, Reece and Aigrain (2013) [8] use this technique
as part of processing Kepler data sets to remove underlying trends in light curve data.
Applying Variational Bayes (VB) linear regression with automatic relevance determina-
tion (ARD) requires an initial selection of basis functions. This initial selection is then
reduced to the most significant set due to the ARD. The linear model is built from the
basis functions, ¢(x), where x corresponds to the input data points and the weights wy,.
The model (equation 3) also includes noise through the addition of a noise term z, which



is distributed according to the multivariate Gaussian distribution, N (0, ﬁ_lI).

N
t=> wid(x)+z. (3)
n=1

The weight of each basis function, w,, is given a Gaussian prior with zero mean and its
own precision «,. The precisions of weights that do not describe the data will become
extremely large, effectively pushing the weight to its zero mean. In comparison the weights
corresponding to significant basis functions will have precisions that tend to larger value.
Therefore we end up with a much smaller set of significant basis functions. This resulting
shrinkage is often known as ARD (Bishop 2006 [9]).

Taken from the appendix of Roberts et al. (2013) [8], equations 4, 5 and 6 demonstrate
the main building blocks for VB linear regression. The aim is to estimate the posterior of
the model parameters, @, given the data, t. The expectation of the predictive distribution
along with its variance can then be calculated with respect to this posterior distribution
to make a prediction. This posterior distribution is given through Bayes theorem:

p(t[0)p(6)
p(t) @

The vector 8 contains the parameters and hyperparameters of the model «, 8 and w. The
vectors w and « are contain the basis function weights, w,, and precisions, «,, respectively.
The likelihood, p (t|@), describes the noise model of the linear regression model, which is
the Gaussian distribution [["_, A (tn|lw'@,,371). The prior for 6 is given by

p(8]t) =

p(0) =p(wla)p(a)p(B). (5)

The prior on each weight, w,, is given by the Gaussian distribution, N (wn|0, o, 1) and
both e and S are given by Gamma distributions as described in [8].
The final probability distribution to define in equation 4 is the evidence

p(t) = / p (t16) p(8) d6. (6)

The evidence gives a measure of how likely the data is, given the parameters. It can
be reformulated as a free energy term and the Kullback-Leibler (KL) divergence. This
reformulation is demonstrated in [8][Eq. B1 - B6]. The KL divergence is always positive
which means that the free energy term is a strict lower bound on the evidence. In VB
the posterior distribution p(@|t) is approximated by ¢(@|t). This approximation makes
the assumption that the posterior is separable, built up from the product of independent
posteriors over each of the parameters, enabling the problem to become tractable.

The aim is to update the parameters of the posterior distribution by maximising the
lower bound on the evidence. Noticing that the form of the free energy contains a negative
KL divergence, updating the parameters of the model comes from taking the expectation
of the log of the joint distribution with respect to all the other parameters.

Figure 3 demonstrates VB linear regression with ARD using a set of basis functions
consisting of harmonics and polynomials. The growing confidence bounds outside the
range of data provide a good indicator of our increasing uncertainty in the model’s pre-
diction.
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Figure 3: VB linear regression with ARD. The dark blue line corresponds to regression
over the training data and the red line corresponds to mosquito population predictions
at future hours. Note that the data has been normalised to have a mean of zero and a
standard deviation of one.

3 Active Sampling

When a sensor takes a reading, there is a cost associated due to its battery usage. The
inclusion of this constraint is covered in this section by looking at the technique of active
sampling. Active sampling is the process of automatically sampling according to the
network’s uncertainty in its predictions. When the network’s level of uncertainty in its
predictions reaches a certain level, the algorithm takes a new sample. The idea to use active
sampling follows from Osborne, Roberts, Rogers, Ramchurn and Jennings (2008) [10], as
they successfully tested active sampling on a network of weather stations to intelligently
select samples from the stations. This technique can implemented on the mosquito sensor
network to reduce the battery usage. Using the VB model, population predictions are
made that can be qualified by their confidence bounds. Setting a threshold on these
confidence bounds and sampling according to this threshold results in active sampling.

Figures 4 and 5 show the application of this method. An initial ‘burn-in’ time of 8
samples is empirically chosen as it enables enough data to be collected to make predictions.
Without these initial few samples, the confidence bounds never reach the set thresholds.
Preventing the bounds from growing exceedingly large outside the range of the data comes
from fusing the predicted posterior mean with the prior mean and variance of the data.
An empirical prior of the data set variance is calculated from the training data and this
prior is fused with the posterior variance from the VB model, causing the predictions to
collapse to the prior once the posterior bounds get too large.



Normalised VBLR active sampling with 80 hours of battery life
Threshold: 450, MAD: 0.355
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Figure 4: The network dies early resulting in a large MAD of 0.355.

Normalised VBLR active sampling with 80 hours of battery life
Threshold: 550, MAD: 0.288
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Figure 5: Network that lasts the entire data set and has a MAD of 0.288 in comparison
to figure 4.



3.1 Measuring the performance of the network

It is a challenge to measure the success of the active sampling algorithm. This challenge
arises because a network that accurately predicts the true mosquito population but dies
early, must be compared to a network that inaccurately predicts the true distribution but
survives for much longer. The accuracy of a network that expends all of its battery too
quickly will perform better over the range it has sampled from, but will do worse over the
rest of the data as its measurements will drop to zero with no battery life. This paradigm
is shown in figures 4 and 5.

A measure that can be used to determine how well the network is doing is to take the
median absolute deviation (MAD) between the true mosquito population, pe, and the
estimated population, p.s;. The median absolute deviation is defined as:

MAD = median (|pyrye — Pest|) - (7)

The MAD is taken over the entire range of the data, causing a network to be penalised if
it dies early, even if it is accurate over the heavily sampled region.

It is also important to measure the performance of the active sampling by looking at the
lifespan of the network. This can be formulated in terms of the percentage improvement
on the nominal battery life of the network. Both the percentage improvement on the
battery life and the MAD can be used to make a decision on the appropriate value to set
for the sampling threshold. The results of applying these measures of utility are shown in
the following section.

4 Results

Each experiment consists of running the model over a range of thresholds. These exper-
iments are then repeated ten times using different random seeds. The results are then
analysed by looking at the interquartile range and median over these experiments.

Following this methodology, figure 6a demonstrates how the MAD decreases with an
increasing sampling threshold until a certain point. The greatly increased interquartile
range after the threshold of 670 in figure 6a is significant in making a decision as to the
best threshold to select for this network configuration. The steep rise of the upper quartile
means that there is a greater likelihood larger errors occurring than at lower thresholds.
Therefore indicating that the advantage in accuracy of selecting a larger threshold no
longer applies past this point. Additionally, figure 6b shows the percentage increase on
the nominal battery life with the increasing threshold. This is as expected because a larger
threshold encourages fewer samples to be taken. The interquartile range grows as well,
implying that we can be less certain of the expected lifespan of the network with larger
sampling thresholds.

5 Conclusion

The results in the previous section demonstrate the compromise between increasing the
lifetime of the network and the level of accepted error between the true and predicted
mosquito distribution. Looking at figures 6a and 6b, a larger sampling threshold implies
that the network lasts longer until a threshold of 650, as the median and the upper
quartile of the MAD across the 10 experiments are both lower until a threshold of 650. It
is also important to note that as the interquartile range grows with larger thresholds. The
implication is that we are increasingly less certain of achieving better results in terms of
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Figure 6: The two plots show the results of running the model for a range of thresholds and
a range of random seeds. The inittal battery life given to the network was 60 hours and
the data set consisted of 674 hours of readings. The median and interquartile range are
calculated over the ten results available at each threshold, where each result corresponds
to a different random seed.

the MAD and the network’s lifespan. Therefore it is recommended to choose a threshold
that we expect will give a suitable level of accuracy and increased battery life along with
a sufficiently low upper quartile. Continuing from our observation that the upper quartile
increases after 650, this threshold could be a suitable choice for this particular network.
The applied methodology generalises to other network configurations and can be used to
improve their performance.

In this paper a basic sensor network to detect mosquitoes has been modelled and the
constraint of improving the life of the network has been covered through active sampling.
The results of this paper have been useful in exploring a way in which active sampling
could be used in the HumBug project for coordinating the distributed devices. Modelling
the sensor network has also highlighted many challenges that need to be overcome in future
network design. The decision to set initial parameters, such as the number of sensors, the
swarm locations and the sensor detection radii played a significant role in the network’s
behaviour. Better insight is needed for more accurate models in future work. However, as
more mosquito data is collected, our knowledge of selecting these parameters will become
clearer.

Another interesting area to be explored is the application of reinforcement learning to
allow each sensor to learn when to expend and preserve battery life. Decentralising the
control of the network may improve battery life as switching on the entire network to take
a sample may not be the most efficient way to save battery whilst covering the largest
possible area. Furthermore treating the sensors as agents and taking the game theoretic
point of view could allow the sensors to start competing with each other to switch off,
which could also improve the lifespan and coverage of the network.

Overall the technique of active sampling has increased the lifespan of the network and
this success points to applying active sampling on real data in the near future when made
available.



References

1]

2]

[6]

Alessandro Farinelli, Alex Rogers, and Nick Jennings. Maximising sensor network
efficiency through agent-based coordination of sense/sleep schedules. 2008.

Alex Rogers, Esther David, and Nicholas R Jennings. Self-organized routing for
wireless microsensor networks. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 35(3):349-359, 2005.

Rajdeep K Dash, Nicholas R Jennings, and David C Parkes. Computational-
mechanism design: A call to arms. Intelligent Systems, IEEE, 18(6):40-47, 2003.

HumBug: Mosquito Detection and Habitat Mapping for Improved Malaria Vector
Modelling. http://humbug.ac.uk. Accessed: 09-05-2016.

Marianne E Sinka, Michael J Bangs, Sylvie Manguin, Theeraphap Chareonviriyaphap,
Anand P Patil, William H Temperley, Peter W Gething, IR Elyazar, Caroline W
Kabaria, Ralph E Harbach, et al. The dominant Anopheles vectors of human malaria
in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis.
Parasit Vectors, 4(1):89, 2011.

Yanping Chen, Adena Why, Gustavo Batista, Agenor Mafra-Neto, and Eamonn
Keogh. Flying insect classification with inexpensive sensors. Journal of insect be-
havior, 27(5):657-677, 2014.

GPy. GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.

S Roberts, A McQuillan, S Reece, and S Aigrain. Astrophysically robust systematics
removal using variational inference: application to the first month of Kepler data.
Monthly Notices of the Royal Astronomical Society, 435(4):3639-3653, 2013.

Christopher M Bishop. Pattern Recognition. Machine Learning, 2006.

Michael A Osborne, Stephen J Roberts, Alex Rogers, Sarvapali D Ramchurn, and
Nicholas R Jennings. Towards real-time information processing of sensor network
data using computationally efficient multi-output Gaussian processes. In Proceedings
of the 7Tth international conference on Information processing in sensor networks,
pages 109-120. IEEE Computer Society, 2008.

10


http://humbug.ac.uk
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

	Introduction
	Modelling the sensor network
	Reconstructing the mosquito density function using a Gaussian process
	Variational Bayesian linear regression with automatic relevance determination

	Active Sampling
	Measuring the performance of the network

	Results
	Conclusion

