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Abstract

The ability to track and monitor animals in the wild presents a challenge

in both hardware and software development. This is a challenge facing all

sensor networks, where there is a requirement for more computation to take

place at the nodes whilst expending minimal battery life. In this paper we

look at applying reinforcement learning on accelerometer data collected from

a lion tag to learn a sampling control policy that adapts according to a lion’s

behaviour. The results show that it is possible to reduce battery consumption

by 73 % with a reconstruction accuracy of 51 %.

1 Introduction

Tracking and monitoring animals in the wild is a key challenge with outcomes that inform
conservation and management policies. In order to push the boundaries on the types
of species that we can monitor, development must take place in both the hardware and
software design. However, this challenge is not only limited to animal tracking, as it
is becoming universal for all networks coming under the broad umbrella of ‘internet of
things’. A key challenge stems from the increasing requirement for more computation
to take place directly on the nodes, whilst expending minimal battery life. This paper
takes data collected from lions in southern Zimbabwe and looks at applying machine
learning techniques to adaptively sample according to a lion’s behaviour. In particular,
we use the method of reinforcement learning to achieve unsupervised adaptive sampling.
The objective is to apply these techniques to increase the battery life of the tags and
to maintain the reconstructed data at an acceptable level for zoologists to apply further
analysis.

The importance of understanding animal behaviour is not just purely pedagogical.
Interest in animal tracking also comes from the value of understanding how certain animals
spread diseases and from the need to improve our knowledge of wildlife conservation. In
the paper by Wilson et al. (2013) [1], they describe the hunting dynamics of wild cheetahs
based on measurements such as GPS and accelerometer readings. The work by Wilson
et al. is the first to document the hunting characteristics of a ‘large cursorial predator
in its natural habitat’ and highlights the di�cult compromise between high accuracy and
long battery life. The sampling strategy that Wilson et al. implement is based on their
prior knowledge of the likely active times of the day, which is combined with sensor level
thresholds being triggered.
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Although often e↵ective, basing sampling strategies that use heuristics can be restric-
tive and not very adaptable. A recent study into the location tracking of wild flying foxes
[2] (2016) focussed on a technique referred to as ‘Energy- and Mobility-Aware Tracking’.
Sommer et al. test three sampling strategies, one of which uses cheap sensor readings to
extrapolate the current position of the flying fox from its last GPS reading. The confidence
in the extrapolation is given by the variance and once the variance reaches a threshold,
another GPS reading is taken. The success of an adaptive sampling strategy, such as in [2],
provides motivation for exploring alternative techniques for producing sampling strategies.

Ideally one would like to have a generic sensor that could be attached to any animal
and learn anticipated patterns of activity in order to adaptively schedule sensor sampling.
This is particularly important for sensors that can not be duty-cycled rapidly, such as
GPS, which has a high cost of activating.

Section 2 introduces the accelerometer data set by highlighting its significant features.
Q-learning is described in section 3, and the implementations followed by the results are
given in sections 4 and 5 respectively. These results are then commented on in section 6.

2 The accelerometer data

This section introduces the data and identifies the key aspects to focus on to tackle the task
of adaptive sampling. The overall objective is to reduce the average energy requirement
of the sensor whilst keeping the level of accuracy satisfactory for analysis by zoologists.
When the lion is active, to achieve a high accuracy, we must sample at a higher rate.
Therefore the objective is to sample at a higher rate when the the lion is active and to
sample at a lower rate otherwise, such as when the lion is sleeping. The accelerometer
data covers 9 days for a particular lion and records an average reading along with variance
in each of the x, y and z directions at every second.

The data was collected from lions living at the Bubye Valley Conservancy (BVC) in
southern Zimbabwe [3]. Initially the lions were equipped with just accelerometer bio-
loggers that could last 4-8 months. Some of which were subsequently replaced with up-
dated bio-loggers that were able to record audio. The capability to continuously record
audio dramatically reduces the battery life of the logger, giving an expected life span of
10-14 days. Therefore there would be a significant advantage for further studies if the
sampling strategy could be configured on the device to increase the life span.

Adapting the sampling strategy according to the behaviour of the lion means exploiting
features from the collected data that are informative about the animal’s activity. Look-
ing at Figure 1, it is possible to highlight significant features of the data. The average
accelerometer reading in each of the three axes is displayed in the top plot along with the
corresponding variance in the axes below. Note that the variance in the figure is smoothed
with a median filter for clarity. These samples are taken at 1 Hz. Regions of low variance,
such as from around node time 182000 and onwards, are normally interpreted as periods of
resting or sleep. The step changes in the accelerometer readings that take place during the
resting periods often correspond to the animal changing position in its sleep. Examples
of the step changes can be seen in the top graph of figure 1, two of which occur slightly
before both 184000 and 187000. In regions of high variance we expect the lion to be active
and therefore are interested in sampling at a higher rate to monitor behaviour believed to
contain richer information.

Along with the accelerometer data, the tag has access to the Coordinated Universal
Time (UTC), which makes it possible to produce representations of the data such as
Figure 2. This figure contains the mean hourly variance readings plotted against the time,
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Figure 1: The upper plot displays the average accelerometer readings for each axis, mea-
sured every second. The aligned lower plot shows the corresponding variance associated
with the above readings at each second. A median filter has been applied for smoothing
across the variance values for clarity. The node time is the number of seconds since the
tag has been running and this figure contains a slice of this time.

starting at hour zero when the tag starts recording at GMT time, 18:00:00 21 November
2014. We can see that the lion’s mean variance tends to peak during the night, confirming
that lions are predominantly nocturnal.

2.1 Accuracy and energy usage

The raw accelerometer data is sampled at 1 Hz. This original data is defined as the
ground truth for the duration of this paper and provides a target for the most accurate
reconstruction. An appropriate measure for the accuracy and one which is used, is to take
the mean squared error (MSE) between any reconstructed accelerometer readings and the
original readings. As the data is collected over the three axes, the MSE is calculated by
averaging across all the three axes.

The data only consists of accelerometer readings. It follows that it is safe to assume
that each sample expends one unit of energy. However, if extending to multimodal data
that includes audio and GPS readings, the large discrepancies in the energy requirements
from the respective sensors would have to be taken into account.

3 The application of Q-learning to the data set

In this section, the theory of reinforcement learning is introduced in the form of Q-learning.
Following an overview, two di↵erent implementations are presented.

3



50 100 150 200

Hours

0

5

10

15

20

25

30

M
ea

n
ho

ur
ly

ac
ce

le
ro

m
et

er
va

ri
an

ce

Lion activity with time
Hourly mean accelormeter variance
Night (18:00 to 6:00)

Figure 2: The mean hourly variance plotted against UTC time. The time of day is split
into daytime and night-time, where the background blue shading corresponds to the night-
time readings.

3.1 Q-learning: theory and rewards

Reinforcement learning is a technique that enables agents to learn about how to select
actions as they interact with an environment, with the aim of achieving a certain goal. As
an example, the agent could be a robot and the environment could be a maze that it must
navigate to get to its goal state. The complexity of these environments can range from a
static and completely observable environment to one which is dynamic and only partially
observable to the agent. Rewards are assigned to an agent once it has acted upon its
knowledge of the state. These rewards inform the agent how well it is doing and whether
it was correct to select the last action. Therefore the aim of the agent is to choose actions
in states that it has learnt will give it the highest reward. The reward can be defined in
terms of either looking ahead to the next time step or including a weighted sum of all future
rewards. An overview of reinforcement learning along with some of the di↵erent variations
in methodology can be found in Sutton and Barto’s book ‘Reinforcement Learning: An
Introduction’ [4].

Q-learning is a reinforcement learning algorithm, where the Q refers to the action-
value function that takes a state and an action as an input and outputs the value of the
state-action pair. Introduced by Watkins (1989) [5], the algorithm updates the Q-values
according to

Q(St, At) Q(St, At) + ↵

h
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

i
. (1)

This equation uses the same notation as [4], where ↵, � and Rt+1 each correspond to the
learning rate, discount factor and the reward received at the next time step respectively.
The learning rate determines the size of the update step in learning the parameters associ-
ated with the Q function. These parameters depend on the version of the algorithm being
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implemented, and are described in the subsequent sections. The discount rate weights the
significance of future rewards when updating Q and fits 0  �  1. A discount rate of zero
only takes into account immediate rewards, whereas values nearer to 1 force the agent to
be more concerned about the possible future values of Q that it could receive. Rt+1 is the
reward received at the next time step after being in the state, St, and taking action, At.
The form in which equation 1 is written highlights that the Q(St, At) is updated by the
di↵erence between its current value and the combined total discounted rewards received
at the next step, where this update is controlled by the learning rate. Note that the future
rewards are calculated by taking the maximum over the actions given at the next time
step, which is then discounted.

Therefore to do a one step Q-learning update the tuple, (St, At, St+1, Rt+1) contains
all the required values. These consist of the state-action pair at the current time step
along with the state and received reward at the next time step.

Furthermore, as the requirement is a continuous online interaction with the environ-
ment, there is always a compromise between exploiting the current state by picking the
highest expected reward and exploring less-well known areas of the state space that may
lead to larger rewards. This exploitation vs. exploration paradigm often depends on our
knowledge of the system. An example could be to set the exploration at a high level at
the start, enabling the parameters of the Q function to be learnt faster at the beginning.
This rate can then be reduced with time, as the algorithm’s confidence in the behaviour
of the system increases.

3.2 Tabular Q-learning

The action-value function, Q, can take di↵erent forms. Selecting an appropriate repre-
sentation depends on the number of actions and the size of the state space. It can also
depend on the computation power and memory availability of the system implementing
the algorithm.

If the state space is relatively small and the number of actions is equally small, then
every combination of the state and action space could be represented in a lookup table.
For the lion data, the state space can be split up into discrete inputs to ensure the lookup
table is kept at a manageable size, whilst containing the necessary features required for
selecting appropriate actions.

In this paper, the state space is split according to the time of day and the variance
level. To keep the table small, the variance level is given two discrete labels, high and low.
The threshold for the high level is empirically chosen to be 5 as the data suggests this to be
a suitable level. Although there are various ways of dividing the time into discrete periods,
an example is to take each hour of the day as one of the states. Therefore this gives a
state space of size 48, due to there being 24 hours for both the high and low variance
levels. Given the two actions associated with the two di↵erent sampling rates, this lookup
table would have a dimension of 48⇥ 2. Hence it is possible to imagine that the number
of elements in the table increases exponentially in the number of states. Another example
could be to split the day into quarters to reduce the table’s dimensions to 8 ⇥ 2. If it is
necessary to have a large state space, the problems of representing this state space can be
overcome by approximating the table of Q-values with a function that outputs a value for
each state-action pair.
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Figure 3: A neural network with two hidden layers containing D inputs, M neurons in
the first layer and K in the second layer. All the layers are fully connected, however for
clarity only the neurons outputting z1 and y1 are shown connected.

3.3 Deep Q-learning

One possible approach to dealing with too large a state space is to approximate the table
with a neural network (NN). As an example, Tesauro’s work on the computer program,
‘TD-Gammon’ (1995) [6], used neural networks along with backpropagation to achieve
near human expert level at backgammon. However more recently there has also been a
lot of work in combining Q-learning with NNs, due to the progress being made in deep
learning [7, 8].

3.4 Neural network overview

A NN consists of layers of neurons. Each neuron, i, receives a weighted input, w(1)
i • x,

where x is an input vector containing elements 1 � D and w

(1)
i is a vector of weights

corresponding to each neuron. The superscript refers to the layer associated with the
weights. The weighted input is passed through a non-linear function called the activation
function, h(). The output of each neuron is a scalar value, zi, normally limited to reside
between �1 and 1 or 0 and 1. The non-linearity causes each neuron to behave as a switch
that turns on when stimulated. A single layer’s outputs z can then be treated as the input
vector to the next layer. This nomenclature, taken from Bishop [9], is displayed in figure
3, which displays the feed-forward architecture for two of the neurons in a NN, with two
hidden layers. The equation for the output from a single neuron, i, in the first hidden
layer is:

zi = h

⇣
w

(1)
i • x

⌘
. (2)

The weights of the NN must be learnt through backpropagation, which is the process
of applying the chain rule from the output, to calculate the derivatives with respect to
the weights of the neural network. These derivatives are then used to update the weight
parameters. In the context of reinforcement learning, equation 1 is the objective function
that the NN is optimised to approximate.

Due to the nature of reinforcement learning, it is not always clear how to implement
online training of a NN to ensure that it generalises well. In ‘TD-Gammon’, the stochastic
nature of backgammon meant that the training data contained an even distribution of
examples, enabling the neural network to generalise to entire state space. In many rein-
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forcement learning applications consecutive samples are highly correlated and this leads
to several disadvantages pointed out by Mnih et al. [7]. One issue from updating on many
subsequent samples all residing in a small area of the state space, is that it can cause the
network to get stuck in local minima. In fact, this problem is particularly significant for
the Lion data, as each hour contains 3600 samples. Therefore training at each time step
on this uneven data would be not produce the desired results as the weights get stuck.
The solution given in [7] advises using a technique called experience replay. Instead of
updating the weights at each step, the tuple consisting of (St, At, St+1, Rt+1) is stored
in the experience replay memory. A randomly selected batch of experience replays are
then sampled and used to train the network. Thus, encouraging the batches to contain a
broader spread of state-action pairs. In some cases, if there is prior knowledge available,
it may be possible to preprocess the experience replay memory to contain a diverse distri-
bution of samples. As an example, in the lion data set we can ensure that an even number
of samples from each hour is stored in the experience replay memory.

3.5 Extension to recurrent neural networks

As an alternative to feedforward neural network Q-learning, recurrent neural networks
(RNNs) can be adopted instead. RNNs, unlike the previously mentioned feed-forward
networks, include cycles in their topology [10]. A cycle could take the form of a connection
between a layer and itself. This would make a layer, zt, a function of itself at a previous
time step, zt�1, along with the current input values, xt, and with parameters W.

zt = f (zt�1,xt;W) . (3)

The recurrence, evident in equation 3, enables RNNs to model time dependencies in the
inputs. Therefore an RNN is able to take into account previous states of a lion’s behaviour
as well as the current states, which means using an RNN would exploit the data’s structure.
They still have the advantages of the typical feedforward architectures, in that the number
of weights required is smaller than storing every value in a table. Thus, mapping better
to the challenges of resource constrained optimisation.

However, training RNNs is di�cult due to issues with exploding and vanishing gra-
dients as mentioned in [11]. One way of resolving this issue is by utilising a di↵erent
architecture, the Long Short Term Memory (LSTM) architecture [12]. An LSTM combats
the vanishing gradient problem by including a gating mechanism within each layer. In
order to gain further insight into the LSTM architecture a good reference for the formulae
is in [10].

Figure 4 shows the deep Q architecture implemented in for this data set. The LSTM
layer receives a sequence of three consecutive state inputs in time, xt0, xt1 and xt2. The
LSTM layer feeds into a dense layer, which is followed by a softmax layer that assigns
values to the two di↵erent actions, Qa1 and Qa2.

3.6 Implementation on the lion accelerometer data

Implementing Q-learning on the lion accelerometer data goes through the following stages:

• Initialise the Q-function parameters, either the tabular values or the network weights.

• Select whether to explore or exploit according to the exploration-exploitation prob-
ability.

– If explore:
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Figure 4: Network architecture for deep Q-learning on the lion data set. The LSTM layer
takes in a sequence of three consecutive states in time. The output is passed to a dense
layer and then a softmax layer, which approximates the Q-values for the two actions.

⇤ Sample at the maximum rate and assign rewards for the di↵erent sampling
rates. The results are either stored in the experience replay or used to
directly update the table depending on the Q function approximation.

– If exploit:

⇤ Select the action corresponding to the highest Q value given the current
state.

This process is repeated with the exception that for deep Q-learning, the network is trained
at the end of the cycles when the experience replay memory is full.

Although the concept of giving rewards for actions has been mentioned, it is not
necessarily clear how these rewards are to be defined. We must penalise sampling at a
high rate when energy is being used to monitor a stationary lion and reward sampling at
a high rate when the lion is moving around.

A possible reward function, received at the next time step Rt+1, based on the MSE be-
tween the original readings, xs, and the reconstructed readings, x̂s, could be the following:

Rt+1 =

(
� 1

S

Pt+S
s=t (xs � x̂s)

2 � �, if sampling period is Sl

��S, if sampling period is Su
(4)

where,

S =
Sl

Su
(5)

The Sl corresponds to the sampling period of selecting the lower frequency action and
Su to the upper. The reconstructed readings are taken as a linear interpolation between
the time at t and the time at the next sample, t+S. The compromise between the accuracy
and energy is given by the value of �. The � penalises the number of samples and therefore
the expenditure of energy. When sampling at the lower rate, only one sample is taken and
therefore the energy penalty is �. At the higher rate, S samples are taken and is penalised
accordingly.
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Unfortunately equation 4 produces a reward function that is too noisy for learning the
parameters of the Q function consistently. An alternative reward function and one that
appeals to reinforcement learning due to its simplicity is counting the number of samples
with a high variance. Therefore sampling at a higher rate is rewarded according to the
number of high variance samples in a batch. The ��S term is included to penalise the
energy usage of sampling at the higher rate. A reading has a high variance if it is above
a given threshold, v. The indicator function (var(xs) � v) in equation 6 equals 1 when
the variance of the sample is above the threshold and 0 otherwise. This equation,

Rt+1 =

(
0, if sampling period is SlPt+S

s=t (var(xs) � v)� �S, if sampling period is Su
(6)

like the equation 4, is only applied during the exploration phase. Although for this partic-
ular reward function, if the higher sampling rate is chosen when in the exploitation phase,
then rewards can still be calculated as they depend on sampling at the maximum rate.

So far the algorithms have assumed that there are only two actions, sampling at a
lower rate or at a higher rate. However the algorithms can be adapted to include a larger
choice of actions by extending the reward function to cover more rates.

3.7 The challenges of implementing on an embedded system

As the intention is to run these algorithms on an embedded system, it is important to
mention the limitations of these devices. The current tag contains an 8 bit microcontroller
with 8 KB of RAM. Future versions of the tag could have up to 128 KB on a 32 bit
ARM core. Therefore computation and memory are key areas that limit the capability
of applying machine learning techniques such as Q-learning on the bio-loggers. 8 KB of
RAM would limit the number of weights used in the NN for deep Q-learning. Even using
half precision floats would only allow for 4, 000 weight parameters. This number is to be
compared with the 67, 842 parameters used in this report. It is very unlikely that, even
with further experiments, the current architecture could work with the number of weights
reduced by over an order of magnitude. Furthermore, the experience replay memory must
be stored in order to apply online training. As NNs require a lot of data to train, the
memory requirements for this procedure would not be well suited to the microcontroller.
Finally, the order of complexity of the NNs comes from multiplying matrices in both the
feed forward stage and the training stage. Returning to figure 3, producing all the outputs
y1 � yK requires D⇥M ⇥K calculations. This number of calculations is not desirable as
one of the key concerns is conserving battery life and each calculation has an energy cost.

Slightly more promising is the tabular Q-learning as it is possible to control the size
of the state-action space by splitting it into discrete values. As an example, 8 states and
2 actions would only use about 64 B of RAM at single-precision. Additionally, there is
not the same requirement for storing the experience replays and the level of computation
is much lower because equation 1 is the only calculation applied at each time step.

Due to the level of computation and memory requirements of the Q-learning algo-
rithms, it is also important to test out a basic heuristic to see if the Q-learning provides
the improvement needed to make it worth using. An appropriate heuristic is to look at
the variance level over the past few samples and make a decision on the rate to sample
the next batch of incoming readings. Section 4 gives details of this method.
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4 Experimental Comparison

In this section, we describe the algorithms and experimental setup. In all of the algorithms,
the choice of actions is either the maximum sampling rate of 1 Hz or the lower sampling
rate of 1

/32 Hz. Thus the sampling periods for the upper, Su, and lower, Sl, rates are
equal to 1 s and to 32 s respectively. All algorithms are run on the nine day data set with
the MSE and the total number of samples both recorded for each implementation. The
MSE is used as the metric for accuracy, whereas the measure for energy usage is indicated
by the samples taken. For each sampling scheme, a pareto-optimal curve is produced
by varying the regularising parameter, �. We now introduce the details of each of the
sampling strategies that produce the results in section 5.

4.1 Heuristic approach

The heuristic-based approach follows equation 6 but looks at the last S samples instead
of calculating the reward over the next S samples.

4.2 O✏ine oracles

The two o✏ine methods assume that all the data is available. Each of the algorithms
separately follow equations 4 and 6. Thus the ideal pareto-optimal curve is given by
calculating the reward according to each algorithm’s equation and retrospectively selecting
the action at each time step that gives the highest reward. The o✏ine method that uses
equation 4, directly compares the MSE with the number of samples taken. Thus providing
the upper bound on performance. The alternative o✏ine scheme uses equation 6, which is
the Q-learning reward function. Therefore, this sampling scheme gives the expected upper
bound performance for the Q-learning methods.

4.3 Tabular Q-learning

For this tabular method, the state space is partitioned into eight discrete values. The time
is divided into the hours between 0 � 6, 6 � 12, 12 � 18 and 18 � 24. Each state in time
can then either take the low or the high variance value according to the threshold. The
value of 0.9 is chosen as the probability of exploitation.

4.4 Deep Q-learning

To implement the deep Q-learning algorithm, we use the Keras library in Python [13] with
a Theano backend. The first layer is an LSTM layer that receives a sequence of the last
three input states, where the input state contains the hour of the day, the mean variance
across the axes and the three accelerometer readings. The output of the LSTM layer is
passed to a dense layer of 128 units, which then feeds to a softmax layer to produce the
two Q values for the two action choices. The probability of choosing exploitation over
exploration is also chosen as 0.9.

4.5 Random selection

The random selection sampling scheme gives a lower bound on the performance. Unlike
the other algorithms, the pareto-optimal curve is produced by varying the action selection
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according to a probability that moves from 1 to 0 for the highest sampling rate. There-
fore, each experiment has a constant probability of selecting each action throughout one
implementation. We expect all sampling strategies to do better than this lower bound.

5 Results

Figure 5 displays the pareto-optimal curve for the implementation of the di↵erent sampling
strategies. The vertical axis is the number of samples taken when running an instance of
an experiment over the nine days of accelerometer data. The horizontal axis is the MSE,
defined as the sum of the squared errors between the original accelerometer readings and
the reconstructed accelerometer readings. Each sampling scheme is colour coded, where
each point within a scheme varies according to the � parameter, except for the random
sampling scheme.

In order to interpret the results of the figure, the vertical axis can be viewed as being
directly proportional to the energy usage and the horizontal axis as the accuracy. As an
example, taking a point from the heuristic sampling scheme, it is possible to achieve a 73
% reduction in battery usage with a reconstruction accuracy of 51 %. This is calculated
by treating the maximum MSE as the one given by sampling at the lowest rate for the
entire duration of the data set. It then follows to calculate the reconstruction accuracy as
a linear sliding scale between this maximum, and a zero MSE when exactly reconstructing
the original data. The reduction in battery life comes from comparing the number of
samples taken during an experiment with the number of samples at the maximum rate.
Depending on the demands, it is possible to pick a sampling strategy and then set the
parameters according Figure 5.

6 Conclusion

The results in figure 5 suggest that using the simple heuristic method to select the sampling
rate will perform the best. However, the performance of the tabular Q-learning method
is not significantly worse than this heuristic-based approach and there is potential for the
tabular approach to tend to the heuristic one with more data. Both the larger complexity
and memory usage of deep Q-learning suggest that it is not worth pursuing this method
further, unless there are changes in the size and structure of the data or if the objective
of the problem is changed.

The weak structure of the data may have hindered both Q-learning strategies because
attempts to find structure in the data from the reinforcement techniques could present too
much of a challenge. This weak structure could also explain why the gap in performance
between the o✏ine and online strategies is significant, due to the di�culty in making good
predictions on the unstructured data. The accelerometer data only covers nine days for
one particular lion and it may not be possible to infer any consistent daily behaviour from
this sample size. This could explain why using a heuristic that takes a look at the variance
of the previous few time steps has performed so successfully.

6.1 Di�culties with training for deep Q-learning

The di�culties in training the RNN is apparent from the worse pareto performance curve.
These di�culties may stem from the fact that NNs require a lot of data and the data
available may not be enough to achieve optimal performance from the deep Q-learning
paradigm. As an example, applying the same architecture for character prediction needs
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Figure 5: This figure displays the optimal pareto curves when compromising between the
number of samples taken and the MSE for all of the experiments. The black and the
red curves are both o✏ine sampling schemes. The black curve follows equation 4 and the
red follows equation 6. The magenta curve is a sampling scheme that selects the highest
sampling rate according to a probability that varies to produce the pareto curve. The cyan
curve is based on the heuristic discussed in 4.1. The blue and green points correspond to
the pareto curves of the deep and tabular Q-learning sampling schemes respectively.

around 100,000 examples before it starts to achieve a notable level of performance [14].
Another issue comes from the data not being smoothly distributed across the state space.
Therefore it is di�cult to ensure that the experience replay memory contains an even
population of tuples that cover the available state space. This coverage is a requirement
for ensuring the NN does not get stuck in local minima and generalises well.

The gains to be made from deep Q-learning algorithm might be more attuned to
multi-modal data that combines the accelerometer data with audio and GPS readings.
Incorporating inhomogeneous sensor readings would add another level of complexity to
the problem that would need more sophisticated sampling strategies. These sampling
strategies would have to take into account the energy expenditure and information content
when sampling from di↵erent sensors. In this case, a deep neural network might perform
better at extracting this potentially much larger space of features. However, the addition
of further data streams would also encounter many of the same training problems and
may not outperform tabular Q-learning or a more advanced heuristic.

6.2 Suggestions for further work

As the heuristic performed better than the reinforcement learning methods, this should
be taken as the baseline to improve on in further research. A possible improvement to be
made on the heuristic method could be to combine it with tabular Q-learning to adapt
the variance threshold level according to the time of day. As an example, if the lion were
more active at night, the tabular Q-learning would be used to learn a lower threshold to
make it more likely to trigger the higher sampling rate at night.
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Furthermore, it would be worthwhile in performing the same experiments on other
lions to see if the reinforcement learning techniques develop individual strategies for each
lion. Learning these strategies may in itself be a useful tool for comparing how di↵erent
lions behave and whether certain ages or sexes of lions are active at di↵erent times.

Putting these algorithms on embedded systems is another challenge and also a step
that must be taken in order to make further progress. A benefit of the higher performance
of the heuristic method is that it is also the most suited for implementation on such a
device. This benefit is also true of tabular Q-learning, as long as the state space is limited
to easily fit in the memory. In comparison, a lot more work is needed to be able to put
a deep network on a small, low energy device such as the ones that are used for tracking
the lions.
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